Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# 3 $\beta$-(1-Allyl-1-pyrrolidinio)-16-(2-pyri-dylmethylene)androst-5-en-17 $\beta$-ol bromide hemihydrate 

G. Vasuki, ${ }^{\text {a }}$ S. Thamotharan, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ K. Ramamurthi, ${ }^{\text {a }}$ S. Dubey ${ }^{\text {b }}$ and D. P. Jindal ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\text {b }}$ University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
Correspondence e-mail: sarati@yahoo.com
Received 7 May 2002
Accepted 24 July 2002
Online 21 September 2002
The title compound, $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, has the outer two six-membered rings in chair conformations, while the central ring is in an $8 \beta, 9 \alpha$-half-chair conformation. The fivemembered ring of the steroid nucleus adopts a slightly deformed $14 \alpha$-envelope conformation. The pyridylmethylene moiety has an $E$ configuration with respect to the hydroxyl group at position 17. The structure is stabilized by a network of $\mathrm{O}-\mathrm{H} \cdots$ Br-type intermolecular hydrogen bonds.

## Comment

The present X-ray investigation of the title compound, (I), was undertaken as part of our study of the structure and conformation of new synthetic steroid derivatives (Vasuki et al., 2001; Vasuki, Parthasarathi, Ramamurthi, Jindal \& Dubey, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002; Vasuki, Thamotharan et al., 2002). It is well known that minor changes in the basic composition of steroids significantly alter their biological activities (Duax \& Norton, 1975). We are particularly interested in studying the conformational flexibilities of steroids due to various possible substitutions at the C3, C16 and C17 positions.

(I)

The puckering parameters in (I) [ring $A: Q=0.576$ (5) $\AA, \theta=$ $10.1(5)^{\circ}$ and $\varphi=84(3)^{\circ}$; ring $C: Q=0.562(5) \AA, \theta=8.9(5)^{\circ}$ and $\varphi=251(3)^{\circ}$; Cremer \& Pople, 1975] show that rings $A$ and $C$ adopt chair conformations. The presence of the pyrrolidine moiety bonded to C3 does not disturb the usual chair
conformation of ring $A$ of the steroid nucleus. The C5-C6 (Csp ${ }^{2}$ - Csp ${ }^{2}$ ) distance of 1.331 (6) $\AA$ confirms the localization of a double bond at this position. Due to this double bond, the environment of atom C5 is planar, and hence ring $B$ adopts an $8 \beta, 9 \alpha$-half-chair conformation $\left[Q=0.498(5) \AA, \theta=50.9(6)^{\circ}\right.$ and $\left.\varphi=217.5(7)^{\circ}\right]$. Similar observations have been reported by Caira et al. (1995), Andrade et al. (2001) and Hema et al. (2002).

Ring $D$ adopts a slightly deformed $14 \alpha$-envelope conformation, with pseudo-rotation parameters $\Delta=12.6^{\circ}$ and $\varphi_{m}=$ $46.0^{\circ}$ (Altona et al., 1968). The pyrrolidine ring at C3 exhibits a slightly distorted $\beta$ envelope conformation, with $\Delta=18^{\circ}$ and $\varphi_{m}=42.6(3)^{\circ}$. The $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20-\mathrm{C} 21$ torsion angle of $-171.9(5)^{\circ}$ indicates that the 2-pyridyl ring has an $E$ configuration with respect to the hydroxyl group at position 17. The larger exocyclic angle at C15-C16-C20 [129.3 (4) ${ }^{\circ}$ ] compared with $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20$ [123.1 (4) $\left.{ }^{\circ}\right]$ might be a consequence of repulsion between the lone pair of electrons on atom N 26 of the pyridine ring and atom $\mathrm{H} 15 B$ on C 15 ( $\mathrm{N} 26 \cdots \mathrm{H} 15 B 2.573 \AA$ ).

The $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ pseudo-torsion angle is $7.5(4)^{\circ}$. The equatorially substituted pyrrolidine moiety is oriented at an angle of $78.5(3)^{\circ}$ with respect to the central steroid nucleus. The dihedral angle between the plane of the pyridine


Figure 1
The molecular structure of (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme. All H atoms have been omitted for clarity.


Figure 2
The packing of molecules of (I) viewed down the $b$ axis.
ring and the average molecular plane comprising rings $A, B, C$ and $D$ is $11.4(2)^{\circ}$. The dihedral angle between the pyridine and pyrrolidine rings is $59.6(3)^{\circ}$. The valency angles C8$\mathrm{C} 14-\mathrm{C} 15$ [119.2 (4) ${ }^{\circ}$ ] and $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$ [99.5 (3) ${ }^{\circ}$ ] are close to the expected values of $121.2^{\circ}$ and $101.4^{\circ}$, respectively (Duax \& Norton, 1975). The geometries of the rings are trans at the $B / C$ and $C / D$ ring junctions.

The structure of (I) is stabilized by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ network which involves both the hydroxyl group of the steroid and the water molecules included in the lattice, and a projection down the $b$ axis is shown in Fig. 2.

## Experimental

The title compound was prepared by dissolving 16-(2-pyridylmethylene) - $3 \beta$-pyrrolidinoandrost-5-en-17 $\beta$-ol ( $500 \mathrm{mg}, 1.15 \mathrm{mmol}$ ) in dried dichloromethane ( 50 ml ) and adding allyl bromide ( 1 ml , 7.04 mol ). The reaction mixture was stirred for a few minutes and kept at room temperature overnight. The solid residues were filtered and washed with dichloromethane to afford crystals of (I) (yield: $0.45 \mathrm{~g}, 68.36 \%$; m.p. 517-521 K).

## Crystal data

$\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Br}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=562.61$
Monoclinic, C2
$a=21.054$ (4) A
$b=9.3083(18) \AA$
$c=15.551$ (4) A
$\beta=106.15(2)^{\circ}$
$V=2927.4(11) \AA^{3}$
$Z=4$
$D_{x}=1.277 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
$\quad$ reflections
$\theta=10-15^{\circ}$
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Plate, white
$0.20 \times 0.17 \times 0.17 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4
diffractometer

$$
\theta_{\max }=25^{\circ}
$$

$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan

$$
R_{\mathrm{int}}=0.013
$$

$$
h=0 \rightarrow 24
$$

$$
k=0 \rightarrow 11
$$

(North et al., 1968)

$$
l=-18 \rightarrow 17
$$

$T_{\text {min }}=0.763, T_{\text {max }}=0.793$
2835 measured reflections
2751 independent reflections
2100 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.089$
$S=1.08$
2751 reflections
336 parameters
H atoms treated by a mixture of
$\quad$ independent and constrained
$\quad$ refinement

2 standard reflections frequency: 120 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0413 P)^{2}\right. \\
& \quad+2.1207 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) ; \\
& \text { Friedel equivalents merged } \\
& \text { Flack parameter }=-0.002(12)
\end{aligned}
$$

## Table 1

Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O27-H27 $\cdots \mathrm{Br}$ | $0.81(3)$ | $2.38(3)$ | $3.194(4)$ | $178(6)$ |
| O1 $W-\mathrm{H} 1 W \cdots \mathrm{Br}^{\mathrm{i}}$ | $0.88(4)$ | $2.53(4)$ | $3.405(5)$ | $172(3)$ |
| Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$ |  |  |  |  |

The structure was solved with DIRDIF99 (Beurskens et al., 1999) using the TRACOR option, with the Br atom at the origin. All H
atoms, except the hydroxyl H atom and the water H atom, were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others. The hydroxyl H atom was located from a difference Fourier map and refined using the DFIX option in SHELXL97 (Sheldrick, 1997), with $\mathrm{H} 27-\mathrm{O} 27=0.81(2) \AA$. It was included in the structure-factor calculations with $U_{\text {iso }}(\mathrm{H} 27)=1.1 U_{\text {eq }}(\mathrm{O} 27)$. At this stage, the maximum residual electron density of $2.87 \mathrm{e} \AA^{-3}$ indicated the presence of a possible atom site in a special position with half occupancy. This peak was found near Br , at a distance of $3.40 \AA$. This was assumed to be the O atom of a water molecule and was refined. One of the H atoms of the water molecule was located from a difference Fourier map and, using the DFIX option in SHELXL97, the coordinates of atom $\mathrm{H} 1 W$ were refined, with $\mathrm{O} 1 W-\mathrm{H} 1 W$ restrained to $0.88(2) \AA$, and $\mathrm{H} 1 W \cdots \mathrm{H} 1 W$ (symmetry equivalent) restrained to 1.44 (1) $\AA$, and included in the structure-factor calculations with $U_{\text {iso }}(\mathrm{H} 1 W)=1.1 U_{\text {eq }}(\mathrm{O} 1 W)$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97; molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

SD thanks CSIR, India, for financial assistance, and DPJ thanks Cipla Ltd, Mumbai, for providing the chemicals. GV thanks the UGC, India, for the award of an FIP fellowship (1999-2001).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1189). Services for accessing these data are described at the back of the journal.

## References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Andrade, L. C. R., Paixão, J. A., de Almeida, M. J. M., Martins, R. M. L. M., Soares, H. I. M., Morais, G. J. R., Moreno, M. J. S. M., Sá e Melo, M. L. \& Campos Neves, A. S. (2001). Acta Cryst. C57, 587-589.
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Caira, M. R., Guillory, K. J. \& Chang, L. (1995). J. Chem. Crystallogr. 25, 393400.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hema, R., Parthasarathi, V., Thamotharan, S., Dubey, S. \& Jindal, D. P. (2002). Acta Cryst. C58, o421-0422.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002). Acta Cryst. E58, o355-o356.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2001). Acta Cryst. C57, 1062-1063.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2002). Acta Cryst. C58, o162-o163.
Vasuki, G., Thamotharan, S., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002). E58, o753-o755.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

